A New Process for Carbon Dioxide Conversion to Fuel (DE-FE0029866)

Gökhan Alptekin, PhD Ambal Jayaraman, PhD Sara Rolfe, PhD Rita Dubovik, PhD

DE-FE0029866

2017 CO₂ Capture Technology Meeting

August 23, 2017

TDA Research Inc. • Wheat Ridge, CO 80033 • www.tda.com

Project Objectives

- The objective is to develop a new sorbent and the process around it for CO₂ utilization
- The sorbent converts CO₂ into CO in a redox process using H₂ generated by water electrolysis
 - CO and H₂ mixture (referred to as synthesis gas) is then used to synthesize a wide range of synthetic fuels and chemicals, via Fischer-Tropsch and oxo-synthesis processes
- Specific objectives
 - Sorbent synthesis and development
 - Bench-scale tests to assess technical feasibility
 - Long-term cycling
 - Reactor design (supported by modeling and CFD analysis)
 - Prototype fabrication to carry out proof-of-concept tests
 - Process design and development
 - Gasoline synthesis via methanol-to-gasoline process
 - Diesel fuel synthesis via Fischer-Tropsch

Project Partners

Project Duration

- Start Date = June 15, 2017
- End Date = June 14, 2019

Budget

- Project Cost = \$1,000,000
- DOE Share = \$800,000
- TDA and its partners = \$200,000

Overall Process Schematic

Preliminary Cost Estimate

- In a process that emits less than 1% of the CO₂ utilized may deliver gasoline fuel at \$3.25/gallon
 - Based on energy costs only
 - Capital cost burden is not included
- A potential commercial application will be using natural gas in place of H₂ to carry out the sorbent reduction
 - While there will be a net reduction in the overall CO₂ emissions, the DOE target to emit less than 1% of the CO₂ utilized cannot be achieved

Estimated energy consumption for CO₂ to methanol conversion

	—
Power	Purpose
331.64	MW _e for Electrolysis
23.57	MW _e for CO2 Reduction
-11.41	MW _e from Methanol Synthesis
-12.85	MW _e from Combustor
-6.20	MW _e from MTG process
324.75	MW _e net power needed (Total)
64.95	kWh per gallon gasoline
3.25	\$/ga gasoline
energy80% e	cost assumed to be \$0.05 per kWh

- 45% thermal to electric conversion eff. used for high temperature processes ~ 800°C
- 33% thermal to electric conversion eff. used for low temperature processes ~ 200-300°C

TDA's Sorbent

- Our process uses a unique mixed metal oxide phase to reduce CO₂ A low oxidation state metal oxide phase directly reacts with CO₂, stripping off the oxygen to form CO and a higher oxidation state metal oxide forms
- In a subsequent step the sorbent material is contacted with H₂ to reduce it to complete the redox cycle

Sorbent Contactors

TDA's Sorbent

- The sorbent will be prepared using a structure referred to as a "geode", based on a TDA proprietary synthesis technique
 - A large amount of active ingredients (to ensure a high oxygen uptake)
 - A high mechanical integrity during the large expansions and contractions associated with changes in molar volume of the active material in oxygen absorption and desorption
 - A high chemical stability
 - A high surface area maintained through repeated cycles

TGA Tests

Multiple Cycles at TGA

- Stable oxygen uptake for 20 cycles (following 150 cycle parametric tests) suggests long-term chemical stability
 - 22% wt. O₂ uptake (air is used as the oxidizer to expedite cycling time)

Sorbent Modifications

Various promoters are being explored to impact:

- CO₂ oxidation capacity and uptake rate
- H₂ reduction rate
- \bar{CO}_2 Oxidation and H_2 reduction onset temperature

Reduction: Ramp temp. to 800°C in 2% H_2 /Balance N_2

Oxidation: 100% CO₂ for up to 360 minutes

H₂ Reduction

Sample No.	Onset T, º <u>C</u>	Weight %
1106-55A	299	-17.05
1204-15	368	-16.07
Promoter 1	543	-9.26
Base material	635	-10.45
1204-6	290	-3.53

Project Schedule

Sorbent Optimization

- We will explore various preparation approaches to improve the conversion of CO₂ into CO
 - Evaluate the use of different promoter phases to improve the solid diffusion rates
 - Increase in the oxygen uptake and the rate of reduction
 - Decrease the onset temperatures for these process
- Ensure very high mechanical integrity of the sorbents
 - We will evaluate various binder materials to increase crush strength and attrition resistance
 - Maintaining porosity for fast absorption/regeneration rates
- Rapid screening of materials will be carried out in thermogravimetric analyzer (TGA)

Sorbent Evaluation

- Sorbent samples that meet our physical properties and chemical activity requirements will be evaluated in a micro-reactor
- We will compare the activity of these formulations under representative conditions
- Parametric tests to identify optimum operating conditions
 - Temperature
 - Pressure
 - Gas-solid contact time

Sorbent Life Testing

- The most promising sorbent samples will be evaluated for multiple cycles to determine chemical and mechanical stability
- A minimum of 10,000 cycles will be completed to assess sorbent stability
- The most suitable test equipment will be selected based on the final process equipment design (fixed-bed, fluidized bed, circulating bed etc.)

Design of the Gas-solid Contactors

- We will carry out a detailed design of the sorbent reactors using computer simulation and modelling
- In collaboration with GTI, a CFD analysis will be completed to identify the best configuration for the gas-solid contactor
 - To provide information on the flow, concentration and temperature distributions in the reactors

- This will provide a complete prototype unit design and preliminary design of the full-scale system
 - Engineering drawings and 3D layouts

Design and Fabrication of a Proof-of-Concept Test Unit

- A proof-of-concept test unit will be designed will be fabricated and used to carry out evaluations
- We will first complete experiments in a cold-flow visualization system
 - A transparent plastic version of the desired size reactors to monitor distribution of sorbent particles within the reactor
- We will fabricate the apparatus to carry out proof-of-concept tests
- We will carry out shakedown and troubleshooting of the prototype test unit
- We will then tests system for CO₂ conversion to CO through multiple absorption/ reduction conditions
- The prototype unit will be operated for at least 500 hours of operation under simulated conditions

Process Design and Simulations

- In collaboration with UCI, we will configure and optimize the entire CO₂ utilization plant starting at a subsystem level
- We will establish the basis for process design and develop the Aspen Plus[™] models that use TDA's CO₂ utilization system integrated with two chemical conversion processes
 - To diesel fuel via Fisher-Tropsch synthesis
 - To gasoline via MTG process
- Net process efficiency and the cost of fuel produced will be estimated
- Material and Energy Balances
- Cost Estimates
 - Capacity Factored Estimates
 - Equipment Modeled Estimates
 - Vendor Supplied Estimates
- Capital requirements, operating and maintenance costs will be developed in accordance with the DOE NETL's Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies document

Life Cycle Analysis (LCA)

- We will complete a detailed product life cycle analysis to validate that there is a net reduction in carbon footprint
 - To quantify any additional CO₂ or greenhouse gas (GHG) emissions while utilizing the CO₂ generated by the power plants
- The proposed technology's carbon foot print on a percent reduction basis will be compared to that of the state-of-the-art conversion technologies

Acknowledgements

- DOE/NETL funding provided the DE-FE0029866 project is greatly acknowledged
- Project Manager, Steve Mascaro

